BABI

PENDAHULUAN

1.1. Latar Belakang

Semua konstruksi bangunan sipil akan ditopang oleh tanah, termasuk gedunggedung, jembatan, jalan, menara dan berbagai bangunan air seperti bendungan dan saluran-saluran irigasi. Oleh karena itu kondisi tanah dasar sangat mempengaruhi kestabilan dan keamanan konstruksi bangunan diatasnya. Salah satu unsur bangunan yang langsung berhubungan dengan tanah dasar adalah pondasi (Akbar Rahmad, 2019).

Pondasi adalah suatu konstruksi pada bagian dasar struktur bangunan yang berfungsi untuk meneruskan beban yang diakibatkan struktur pada bagian atas kepada lapisan tanah yang berada pada bagian bawah struktur tanpa mengakibatkan keruntuhan geser tanah, dan penurunan tanah pondasi yang berlebihan.

Pada umumnya pondasi dibagi menjadi 2 jenis yaitu pondasi dalam dan pondasi dangkal. Menurut Terzaghi (1943) dalam Das (2007), pondasi dangkal memiliki kedalaman pondasi kurang atau sama dengan lebar pondasi. Umumnya pondasi dangkal memiliki kedalaman kurang dari sama dengan 3 meter dari atas permukaan tanah, sedangkan pondasi dalam merupakan pondasi dengan kedalaman lebih dari 3 meter dari atas permukaan tanah.

Pondasi telapak umumnya digunakan untuk mendukung kolom (Hardiyatmo, 2006). Pondasi ini berupa tiang yang bersambung dengan kolom dan sebuah plat di bawahnya yang fungsinya untuk menyalurkan beban struktur ke tanah. Pondasi ini banyak dipakai karena selain ekonomis juga pelaksanaannya mudah dan tidak memerlukan peralatan khusus. Pondasi telapak dinilai efektif untuk menahan beban struktur hingga dua lantai. Pondasi telapak termasuk pondasi dangkal karena perbandingan kedalaman dan lebar pondasinya (Df/B) ≤ 1. (Peck dkk., 1953), dalam Hardiyatmo (2006).

Kemudian, pemilihan jenis dan desain bentuk pondasi tergantung pada jenis lapisan tanah yang ada dibawahnya. Apabila lapisan tanah tersebut keras maka daya dukung tanah tersebut cukup kuat untuk menahan beban yang ada, tetapi bila tanah lunak diperlukan penanganan khusus agar mempunyai daya dukung yang baik.

Tanah selalu mempunyai peranan yang penting pada suatu lokasi pekerjaan konstruksi. Tanah adalah pondasi pendukung bangunan, atau bahan konstruksi dari

bangunan itu sendiri. Mengingat hampir semua bangunan itu dibuat diatas atau dibawah permukaan tanah, maka harus dibuat pondasi yang dapat memikul beban bangunan itu atau gaya yang berkerja pada bangunan itu. Kondisi tanah dasar di suatu tempat berbedabeda, maksudnya adalah kemungkinan jenis tanah pada kedalaman tertentu di suatu lokasi berbeda-beda atau juga kemungkinan kepadatan tanahnya berbeda-beda. Dengan adanya perbedaan kondisi tanah sebagaimana tersebut diatas maka akan sangat mempengaruhi daya dukung tanah dalam menerima beban sebagai akibat dari jenis tanah dan kepadatan yang berbeda serta adanya perubahan kadar air tanah.

Daya dukung tanah merupakan kemampuan tanah memikul tekanan dari beban pondasi dan beban bangunan yang terletak di atasnya. Untuk uji sampel tanah di laboratorium antara lain klasifikasi tanah, dan *direct shear*. Data hasil pengujian tanah ini nantinya akan digunakan untuk menghitung daya dukung tanah pondasi. Daya dukung tanah yang diharapkan untuk mendukung pondasi adalah daya dukung yang mampu memikul beban struktur.

Secara teoritis, beberapa ahli mekanika tanah mengembangkan metode-metode untuk menganalisis daya dukung tanah khususnya untuk pondasi dangkal. Metode-metode tersebut mempunyai anggapan/asumsi yang berbeda. Metode untuk menganalisis daya dukung tanah khususnya pondasi dangkal antara lain Terzaghi, Mayerhof, Hansen, Vesic dan lainnya (Akbar Rahmad, 2019). Metode yang digunakan pada penelitian ini adalah metode *Brinch Hansen* dan *Vesic*. Kedua metode ini menyempurnakan perhitungan daya dukung dengan menambahkan faktor-faktor lain yang turut mempengaruhi nilai daya dukung antara lain faktor bentuk pondasi dan faktor kedalaman pondasi.

Pada penelitian ini peneliti mengambil studi kasus Di lokasi Desa Tunfeu, Kecamatan Nekamese, Kabupaten Kupang, yang terdapat menara-menara Saluran Udara Tegangan Tinggi (SUTT). Menara-menara tersebut berfungsi menyalurkan pasokan listrik dari kabupaten Kupang sampai Belu. Namun pada saat terjadi bencana Seroja pada April 2021, terdapat beberapa menara yang mengalami kerobohan, sedangkan pada menara lain di lokasi yang sama tidak mengalami masalah serius hingga roboh.

Untuk itu pada laporan akhir ini, ingin mengidentifikasi salah satu penyebab masalah robohnya menara SUTT terutama pada masalah daya dukung tanah. Hal ini memerlukan studi yang lebih terperinci terhadap sifat dan kondisi dasar tanah. Pada penelitian ini

akan diketahui berapa besar nilai daya dukung tanah pondasi dangkal (telapak). Kemudian melakukan analisis perhitungan daya dukung tanah pondasi dangkal (telapak) pada kasus yang sama berdasarkan metode yang belum cukup banyak digunakan dalam penelitian yaitu metode *Brinch Hansen* dan *Vesic*,.

Dari uraian diatas maka perlu dilakukan penelitian untuk mengetahui nilai daya dukung tanah dengan judul "Analisis Nilai Daya Dukung Tanah pada Pondasi Telapak menggunakan Metode Brinch Hansen dan Vesic".

1.2. Rumusan Masalah

Berdasarkan latar belakang yang dikemukakan di atas, maka permasalahan dalam tugas akhir ini adalah :

- 1. Berapa nilai daya dukung yang dihasilkan pada pondasi telapak menggunakan metode Brinch Hansen dan Vesic ?
- 2. Berapa nilai faktor keamanan yang diperoleh dari metode Brinch Hansen dan Vesic.

1.3. Tujuan Penelitian

Adapun tujuan penelitian adalah:

- 1. Untuk mengetahui nilai daya dukung yang dihasilkan pada pondasi telapak menggunakan metode Brinch Hansen dan Vesic.
- 2. Untuk mengetahui nilai faktor keamanan yang diperoleh dari metode Brinch Hansen dan Vesic.

1.4. Batasan Masalah

Agar penelitian yang dilakukan dapat lebih terarah dan sesuai dengan yang diharapkan, maka penelitian ini dibatasi pada hal-hal sebagai berikut :

- 1. Data yang dipakai dalam analisis adalah data yang diperoleh dari hasil pengujian di laboratorium.
- 2. Hanya menghitung nilai daya dukung tanah.
- 3. Metode analisis daya dukung pondasi menggunakan metode Brinch Hansen dan Vesic.

- 4. Jenis pondasi yang ditinjau adalah pondasi telapak berbentuk bujur sangkar.
- Lokasi yang ditinjau adalah Desa Tunfeu, Kecamatan Nekamese, Kabupaten Kupang.
- 6. Tidak menghitung penurunan tanah yang terjadi.

1.4. Manfaat Penelitian

Ada beberapa manfaat dari penelitian ini, meliputi:

- 1. Dapat dijadikan referensi atau acuan bagi penelitian selanjutnya.
- 2. Memberikan informasi kepada pihak terkait mengenai nilai daya dukung tanah.
- 3. Sebagai data tambahan untuk instansi terkait (LAB PU Provinsi Nusa Tenggara Timur).
- 4. Menambah wawasan peneliti mengenai nilai daya dukung tanah.

1.6. Keterkaitan Dengan Penelitian Terdahulu

Penelitian ini mempunyai hubungan dengan penelitian sebelumnya yang dapat dilihat pada Tabel 1.1

Tabel 1.1 Keterkaitan Dengan Penelitian Terdahulu

No	Nama	Judul	Persamaan	Perbedaan	Hasil
1	Ferra	Analisis daya	Menganalisis	Penelitian ini	1. Berdasarkan hasil
	Fahriani	dukung tanah	daya dukung	mengidentifika	penyelidikan tanah
		dan penurunan	tanah pada	si analisis dari	di lapangan pada
		pondasi pada	pondasi	nilai daya	tiga lokasi daerah
		daerah pesisir	dangkal.	dukung tanah	pantai utara Bangka
		pantai utara		pondasi telapak	dan analisis
		kabupaten		menggunakan	pengujian sondir,
		Bangka.		metode Brinch	dapat diketahui
				Hansen dan	bahwa daya dukung
				Vesic,	tanah untuk kisaran
				sedangkan pada	kedalaman lebih
				penelitian	dari 2 m termasuk
				Saudari Ferra	kategori tanah
				Fahriani,	dengan daya dukung

No	Nama	Judul	Persamaan	Perbedaan	Hasil
				Analisis daya	tanah kaku dan
				dukung tanah	sangat kaku.
				dan penurunan	Sedangkan daya
				pondasi pada	dukung tanah untuk
				daerah pesisir	kisaran kedalaman
				menggunakan	4-5 m termasuk
				metode	kategori tanah
				Mayerhof.	dengan daya dukung
					tanah sangat kaku
					dan keras.
					2. Berdasarkan hasil
					analisis penurunan
					dapat diketahui nilai
					penurunan yang
					terjadi masih dalam
					batas keamanan .
					Setiap lokasi
					memiliki nilai
					penurunan yang
					berbeda, hal ini
					dipengaruhi oleh
					daya dukung tanah
					di masing-masing
					lokasi. Pantai
					penyusuk memiliki
					nilai penurunan
					yang paling kecil
					karena daya dukung
					tanahnya paling
					besar. Semakin
					besar kecil daya
					dukung tanah maka
					penurunan akan
					semakin besar.
					Untuk beban
					struktur bangunan,
					semakin besar beban

No	Nama	Judul	Persamaan	Perbedaan	Hasil
					yang harus ditahan
					pondasi maka
					penurunan yang
					terjadi akan semakin
					besar.
2	Anwar	Analisis daya	1.Menganalisis	Penelitian ini	Hasil dari penelitian
	Muda	dukung tanah	daya dukung	mengidentifika	Saudara Anwar
		pondasi	tanah dan	si analisis dari	Muda menunjukan
		dangkal	penurunan	nilai daya	bahwa:
		berdasarkan	pondasi dngkal.	dukung tanah	1. Daya dukung
		data	2.Melakukan	pondasi telapak	tanah ultimit podasi
		laboratorium.	penujian direct	menggunakan	dangkal metode
			shear atau uji	metode Brinch	Terzaghi makin
			kuat geser	Hansen dan	bertambah seiring
			langsung.	Vesic,	dengan
				sedangkan pada	bertambahnya lebar
				penelitian	pondasi. Pada lebar
				Saudara Anwar	pondasi 50 Cm di
				Muda, Analisis	peroleh daya dukung
				daya dukung	tanah ultimit sebesar
				tanah dan	91.75 ton/m2.
				penurunan	Kemudiaan pada
				pondasi	lebar pondasi 100
				berdasarkan	Cm, maka daya
				data	dukung tanah ultimit
				laboratorium,	makin bertambah
				kemudian	hingga 94.77
				membandingka	ton/m2. Sedangkan
				n dengan	pada lebar pondasi
				menggunakan	150 Cm, daya
				metode	dukung ultimit
				Terzaghi dan	makin bertambah
				Mayerhof.	lagi sebesar 97.77
					ton/m2 dan lebar
					pondasi 200 Cm,
					maka daya dukung
					tanah ultimit pondasi

No	Nama	Judul	Persamaan	Perbedaan	Hasil
					dangkal paling
					tertinggi sebesar
					100.81 ton/m2.
					2. Daya dukung
					tanah ultimit pondasi
					dangkal metode
					mayerhof makin
					bertambah juga
					seiring
					bertambahnya lebar
					pondasi. Pada lebar
					pondasi 50 Cm
					diperoleh daya
					dukung ultimit
					sebesar 111.35
					ton/m2. Kemudian
					pada lebar pondasi
					100 Cm, maka daya
					dukung ultimit
					makin bertambah
					hingga 114.97
					ton/m2. Sedangkan
					pada lebar pondasi
					150 Cm daya
					dukung ultimit
					makin bertambah
					lagi sebesar 118.59
					ton/m2 dan lebar
					pondasi 200 Cm,
					maka daya dukung
					ultimit pondasi
					dangkal paling
					tertinggi sebesar
					122.22 ton/m2.
					3. Daya dukung
					tanah ultimit
					pondasi dangkal

No	Nama	Judul	Persamaan	Perbedaan	Hasil
					metode mayerhof
					lebih besar
					dibanding dengan
					metode Terzaghi.
					Jika dilihat dari
					besaran daya
					dukung tanah ultimit
					pondasi dangkal,
					maka daya dukung
					tanah ultimit metode
					mayerhof naik rata-
					rata sebesar 54.82%
					dibandingkan
					dengan metode
					Terzaghi.
3	Rahmad	Analisis	1.Menganalisis	Penelitian ini	
	Akbar	perbandingan	daya dukung	mengidentifika	1. Besar kapasitas
		daya dukung	tanah pada	si analisis dari	daya dukung dan
		tanah pada	pondasi dngkal.	nilai daya	penurunan tanah
		pondasi	2.Dari metode	dukung tanah	pada pondasi
		dangkal	yang digunakan,	pondasi telapak	dangkal yang berada
		dengan	salah satunya	menggunakan	pada tanah lempung
		menggunakan	metode Hansen.	metode Brinch	pada proyek
		metode		Hansen dan	pembangunan
		Terzaghi,		Vesic,	Lembaga
		Mayerhof,		sedangkan pada	Pemasyarakatan
		Hansen, dan		penelitian	Klas II Labuhan
		metode		Saudara	ruku menurut
		Elemen		Rahmad Akbar,	metode analitis yaitu
		Hingga.		Analisis daya	pada titik S-1 =
				dukung tanah	40,78 T/m2, S-2 =
				pada pondasi	30,85 T/m2, S-3 =
				dangkal,	38,58 T/m2, S-4 =
				kemudian	26,56 T/m2, S-5 =
				membandingka	35,06 T/m2, S-6 =
				n dengan antara	24,46 T/m2. Untuk
				metode Analitis	metode Meyerhof

No	Nama	Judul	Persamaan	Perbedaan	Hasil
				dan metode	pada titik S-1 =
				numerik atau	52,49 T/m2, S-2 =
				elemen hingga.	38,62 T/m2, S-3 =
					49,84 T/m2, S-4 =
					34,09 T/m2, S-5 =
					45,04 T/m2, S-6 =
					31,37 T/m2. Untuk
					metode Hansen pada
					titik $S-1 = 53,27$
					T/m2, $S-2 = 39,21$
					T/m2, $S-3 = 50,59$
					T/m2, $S-4 = 34,70$
					T/m2, $S-5 = 45,71$
					T/m2, S-6 = 31,92
					T/m2. Sedangkan
					untuk penurunannya
					pada titk S-1 =
					84,27 mm, titik S-2
					= 75,89, titik S-3 =
					75,93 mm, titik 4 =
					65,34 mm, titik S-5
					= 59,13 mm, titik S-
					6 = 60,17 mm.
					2. Besar daya
					dukung dan
					penuruanan tanah
					pada pondasi
					dangkal yang berada
					pada tanah lempung
					pada proyek
					pembangunan
					Lembaga
					Pemasyarakatan
					Klas II Labuhan
					ruku melalui
					pemodelan dengan

No	Nama	Judul	Persamaan	Perbedaan	Hasil
					software Plaxis versi
					8.2 yaitu pada titik
					S-1 = 51,34 T/m2,
					S-2 = 40,74 T/m2,
					S-3 = 47,94 T/m2,
					S-4 = 34,12 T/m2,
					S-5 = 46,37 T/m2,
					S-6 = 32,45 T/m2.
					Sedangkan untuk
					penurunannya pada
					titik S-1 = 82,75
					mm, titik S-2 =
					96,90 mm, titik S-3
					= 106,59 mm, titik
					S-4 = 85,59 mm,
					titik $S-5 = 81,33$
					mm, dan titik S-6 =
					81,80 mm .