BABI

PENDAHULUAN

1.1. Latar Belakang

Jalan adalah sarana transportasi darat dengan fungsi krusial di bidang transportasi, yang memfasilitasi kelancaran penyaluran barang dan layanan serta mendukung perkembangan ekonomi di suatu wilayah. (Kiradi & Idham, 2024). Namun, hal ini menyebabkan peningkatan volume lalu lintas yang bertambah setiap tahunnya. Menurut Data Korps Lalu Lintas Polri per 3 Januari 2023 jumlah kendaraan di Indonesia mencapai 152 juta unit. Angka ini meningkat secara signifikan sejak tahun 2020 dimana jumlah kendaraan adalah 136 juta unit. Banyaknya kendaraan yang beroperasi menyebabkan banyak lapisan permukaan jalan yang menjadi rusak karena tidak dapat menahan beban volume kendaraan yang tinggi (Azizah & Rahardjo, 2017). Berkaitan dengan hal tersebut maka dibutuhkan pembangunan, pemeliharaan, dan peningkatan jalan yang didesain dengan struktur perkerasan yang memiliki daya dukung dan keawetan yang baik (Hadijah & Putra, 2017). Hal ini bertujuan agar perkerasan jalan dapat berfungsi secara optimal dan dapat memenuhi umur layanannya tanpa mengalami kerusakan yang signifikan.

Dalam mendesain perkerasan jalan, salah satu yang digunakan yakni perkerasan jalan lentur (Flexible Pavement). Aspal memiliki kemampuan untuk mengikat agregat sehingga memiliki ketahanan terhadap air dan mendukung lapisan perkerasan terhadap beban berat kendaraan (Wiyanto, 2020). Jenis perkerasan yang termasuk dalam perkerasan jalan lentur yaitu lataston. Lataston adalah lapisan tipis dari campuran aspal beton yaitu Hot Rolled Sheet (HRS). Dalam campuran ini, komposisi agregat mendominasi dibandingkan dengan agregat kasar, sehingga lapisan ini tidak bersifat struktural, dan ketebalan minimumnya 3 cm (Thanaya & Ariawan, 2019). Lataston terdiri dari dua tipe, yaitu HRS-WC yaitu lapisan permukaan, dan HRS-Base yang berada di bawah lapisan tersebut (Sukirman, 2016).

Menurut Direktorat Jenderal Bina Marga (2020), jenis gradasi yang diterapkan pada perkerasan HRS-WC dan HRS-*Base* yaitu gradasi senjang. HRS-WC memiliki diameter agregat maksimum 19 mm dengan tebal perkerasan berkisar 2,5 hingga 3 cm. Karena sebagai lapis aus yang berkontak langsung dengan roda kendaraan, maka HRS-WC harus memiliki ketahanan (durabilitas) dan keawetan (Azizah & Rahardjo, 2017). Untuk mewujudkan hal

tersebut maka agregat dan aspal sebagai material pembentuk lapisan perkerasan harus memiliki jenis dan mutu yang baik serta sesuai dengan spesifikasi yang ada sehingga bisa menghasilkan perkerasan jalan dengan kualitas yang baik pula (Leba, 2022).

Selain material yang digunakan terdapat faktor-faktor lain yang berdampak pada mutu lapisan perkerasan, seperti muatan lalu lintas yang berlebihan, jalan yang sudah melewati umur rencana, serta curah hujan yang mengakibatkan terendamnya perkerasan jalan. Beban lalu lintas yang berlebihan tidak mampu ditahan oleh lapis perkerasan di bawahnya. Akibatnya, permukaan jalan secara bertahap menjadi rusak dan masa pakainya berkurang, yang mempengaruhi performa lapisan permukaan jalan, terutama kekuatan dan daya tahannya. (Azizah & Rahardjo, 2017).

Sebagai negara tropis dengan musim hujan dan musim kemarau membuat sebagian daerah Indonesia bersuhu panas dan intensitas hujan yang cukup tinggi. Saat musim penghujan, banyak jalanan akan terendam oleh air hujan. Semakin lama durasi terendamnya jalan dengan air, maka akan menurunkan sifat durabilitas dari campuran beton aspal sehingga perlahan perkerasan jalan akan menjadi rapuh (Sari dkk., 2019). Aspal Jalan yang terendam air bisa menyebabkan kualitas permukaan jalan menurun, hal ini terlihat dari terlepasnya butir-butir agregat dari lapisan aspal serta terangkatnya aspal dari struktur jalan (Amal, 2009).

Pada penelitian di laboratorium, campuran beton aspal yang sudah dilakukan proses pemadatan akan melalui perendaman pada *waterbath* bersuhu standar 60°C selama 30 menit (Direktorat Jenderal Bina Marga, 2020). Pada kenyataannya, waktu terendamnya perkerasan jalan tidak hanya terbatas tetapi bisa lebih lama dengan suhu yang berubah-ubah. Stabilitas campuran Marshall menurun seiring dengan meningkatnya suhu rendaman, yang disebabkan oleh pelelehan aspal dalam campuran (Budirahardjo & Wibowo, 2021).

Penelitian yang dilakukan oleh Samara (2023) terhadap nilai stabilitas dengan memvariasikan suhu perendaman yaitu 60°C, 65°C, dan 70°C dengan durasi perendaman 24 jam di peroleh kesimpulan bahwa semakin tinggi suhu perendaman dapat mengakibatkan stabilitas menurun dan *flow* meningkat. Stabilitas mempengaruhi parameter durabilitas salah satunya yaitu Indeks Kekuatan Sisa (IKS) yang ditentukan dengan perbandingan stabilitas sesudah terendam pada suhu 60°C selama 24 jam dengan stabilitas sesudah direndam pada suhu 60°C selama 30 menit. Lebih lanjut, penelitian oleh (Kinanti dkk., 2022) pada

perkerasan AC-WC menunjukan nilai IKS tertinggi yaitu 97,239% dengan durasi perendaman 24 jam dan terendah adalah 83,127% pada perendaman selama 96 jam. Pada durasi perendaman 96 jam nilai IKS tidak memenuhi Spesifikasi Umum 2018 Revisi 2 yaitu 90%. Jadi, batas toleransi perendaman adalah 72 jam dengan nilai IKS yaitu 91,265%. Artinya perendaman yang semakin lama, menurunkan tingkat ketahanan campuran beton aspal.

Berdasarkan hasil penelitian tersebut, diperlukan penelitian lanjutan dengan memvariasikan suhu perendaman di bawah dan di atas suhu standar, dengan durasi perendaman yang lebih lama secara bersamaan. Variasi suhu perendaman yang dipilih dalam penelitian ini adalah 40°C, 60°C, dan 80°C. Pemilihan durasi perendaman didasarkan pada batas toleransi perendaman dari penelitian terdahulu dan diperlukan dalam perhitungan Indeks Kekuatan Sisa (IKS), yaitu 30 menit, 24 jam, dan 48 jam. Penelitian ini dilakukan guna mempelajari sejauh mana suhu dan air berpengaruh terhadap durabilitas yang diakibatkan oleh proses perendaman pada jenis perkerasan yang berbeda, yaitu HRS-WC.

Penelitian ini memanfaatkan aspal penetrasi 60/70 yang diproduksi oleh Pertamina dan material agregat yang diperoleh dari *Quarry* Talau. *Quarry* Talau adalah satu lokasi yang menyediakan agregat untuk konstruksi jalan raya. *Quarry* Talau dimiliki oleh PT. Pundi Mas Bahagia sejak tahun 2010 yang berlokasi di Desa Tukuneno, Kecamatan Tasifeto Barat, Kabupaten Belu, Provinsi Nusa Tenggara Timur.

Dengan mempertimbangkan penjelasan latar belakang tersebut, dilakukan penelitian berjudul "PENGARUH VARIASI SUHU PERENDAMAN DAN DURASI PERENDAMAN TERHADAP DURABILITAS LAPIS TIPIS ASPAL BETON (HRS-WC) MENGGUNAKAN MATERIAL DARI QUARRY TALAU"

1.2. Rumusan Masalah

Masalah yang akan dikaji dalam penelitian ini sesuai dengan uraian latar belakang yaitu:

- 1. Bagaimana karakteristik fisik material dari *Quarry* Talau untuk perkerasan lataston HRS-WC?
- 2. Bagaimana nilai parameter Marshall sebelum dilakukan variasi suhu perendaman dan durasi perendaman untuk perkerasan lataston HRS-WC menggunakan material dari *Quarry* Talau?
- 3. Berapa Kadar Aspal Optimum (KAO) pada campuran lataston HRS-WC menggunakan material dari *Quarry* Talau berdasarkan pada parameter *marshall*?
- 4. Bagaimana pengaruh variasi suhu perendaman dan durasi perendaman campuran lataston HRS-WC menggunakan material dari *Quarry* Talau terhadap perubahan parameter marshall, durabilitas, dan kerusakan lainnya?

1.3. Tujuan Penelitian

Tujuan dilakukan penelitian ini yaitu:

- Mengetahui karakteristik fisik material dari Quarry Talau untuk perkerasan HRS-WC.
- Mengetahui nilai parameter Marshall sebelum dilakukan variasi suhu perendaman dan durasi perendaman untuk perkerasan lataston HRS-WC menggunakan material dari *Quarry* Talau.
- 3. Mengetahui kadar aspal optimum (KAO) pada campuran lataston (HRS-WC) menggunakan material dari *Quarry* Talau berdasarkan pada parameter marshall.
- 4. Mengetahui pengaruh variasi suhu perendaman dan durasi perendaman campuran lataston HRS-WC menggunakan material dari *Quarry* Talau terhadap perubahan sifat marshall, durabilitas, dan kerusakan lainnya.

1.4. Manfaat Penelitian

Merujuk pada hasil penelitian, manfaat yang didapatkan yakni sebagai berikut:

- 1. Dapat memberikan pengetahuan tentang durabilitas perkerasan jalan (HRS-WC) akibat pengaruh suhu dan durasi perendaman.
- 2. Dapat membuka peluang kepada penelitian-penelitian lanjutan mengenai durabilitas perkerasan jalan akibat pengaruh suhu dan durasi perendaman.
- 3. Dapat dijadikan salah satu referensi bagi para pembaca dalam menentukan komposisi perkerasan jalan guna menghasilkan kualitas jalan yang optimal.

1.5. Batasan Masalah

Beberapa batasan yang ditetapkan yaitu:

- 1. Material yang dipakai mencakup 50 kg batu pecah ¾", 50 kg batu pecah ½", 30 kg abu batu, 30 kg pasir, dan 20 liter aspal penetrasi 60/70 produksi pertamina yang berasal dari *Quarry* Talau milik PT. Pundi Mas Bahagia.
- 2. Pengambilan material dilakukan sesuai metode *Systimatic Random Sampling* (Pengambilan acak sistematis).
- 3. Penelitian ini dilakukan pada jenis perkerasan lataston (HRS-WC).
- 4. Dalam penelitian ini, variasi suhu perendaman yang digunakan adalah 40°C, 60°C, dan 80°C serta variasi durasi perendaman yakni 30 menit, 24 jam, dan 48 jam.
- Lokasi Penelitian di laboratorium Teknik Sipil Universitas Katolik Widya Mandira Kupang
- 6. Tidak dilakukan perhitungan terhadap biaya.

1.6 Keterkaitan Dengan Penelitian Terdahulu

Berdasarkan penelitian-penelitian sebelumnya tentang pengaruh variasi suhu dan durasi perendaman terhadap durabilitas perkerasan jalan yang tentunya memiliki persamaan dan perbedaan diantaranya ditunjukan oleh tabel berikut:

Tabel 1.1 Perbandingan Terhadap Penelitian Terdahulu

No	Peneliti	Judul	Persamaan	Perbedaan	Hasil Penelitian			
1	Arrum Kinanti,	Tinjauan Durabilitas	Pada penelitian ini	Penelitian terdahulu dilakukan pada jenis	Hasil penelitian durabilitas untuk campuran			
	Djoko Sarwono,	Penambahan Kadar	sama-sama meninjau	perkerasan AC-WC dengan penambahan	tanpa penambahan 1,5% styrofoam adalah			
	Ary Setiawan	1,5% Styrofoam Pada	secara khusus tentang	styrofoam pada campuran aspal.	menurunnya nilai IKS seiring dengan			
	(2022)	Aspal Penetrasi 60/70		Sedangkan penelitian ini pada jenis	peningkatan durasi perendaman. Pada penelitian			
		Terhadap Asphalt	perkerasan jalan	perkerasan HRS-WC dengan variasi suhu	ini batas toleransi waktu perendaman yang			
	Concrete-Wearing		dengan variasi durasi	perendaman dan durasi perendaman.	memenuhi nilai stabilitas sisa berdasarkan			
	Course (AC-WC)		perendaman.		Spesifikasi Umum 2018 Revisi 2 (2020) adalah			
					72 jam.			
2	Petrus Giovanni	Pengaruh	Pada penelitian ini	Penelitian terdahulu memakai agregat	Hasil penelitian adalah terjadi peningkatan nilai			
	Lorenzo Kalogo Penggunaan Material		sama-sama meninjau	bulat (agregat alami) sedangkan penelitian	IDP pada perendaman 30 menit, 24 jam, dan 4			
	Leba	Agregat Bulat	durabilitas campuran	ini menggunakan agregat batu pecah	jam. Hasil pengujian untuk IDK adalah nilai			
	(2022)	(Agregat Alami) Pada	HRS-WC memakai	dengan variasi suhu perendaman dan	stabilitas campuran agregat alami perlahan			
		Pemadatan Sedang	variasi durasi	durasi perendaman.	menurun sejalan dengan penambahan waktu			
		Terhadap Durabilitas	perendaman.		perendaman dari 30 menit sampai 48 jam.			
		HRS-WC						

No	Peneliti		Judul		Persamaan		Perbedaan			Hasil Penelitian					
3.	Anggelina	Lani	Pengaruh	Variasi	Pada	penelitian	ini	1.	Penelitian	terdahulu dilaku	ıkan untuk	Hasil	penelitian	menunjuka	n terjadinya
	Samara		Suhu Po	erendaman	sama-sa	ama dilaku	ıkan		campuran	perkerasan	AC-WC	penurun	an nilai	stabilitas s	eiring dengar
	(2023)		Terhadap	Nilai	variasi	S	suhu		sedangkan	penelitian ini	dilakukan	meningl	katnya suh	u perendama	n pada duras
			Stabilitas	Marshall	perenda	aman	dan		pada campu	ıran perkerasan I	HRS-WC.	perenda	man 24 jan	n. Namun nilai	i stabilitas yang
			Pada	Laston	durasi	perenda	man	2.	Penelitian	terdahulu menin	jau khusus	diperole	h masih	dalam batas	minimal pada
			Campuran	Panas	selama	24 jam.			tentang stal	bilitas sedangkar	penelitian	Spesifik	asi Umum	2018 Revisi	2 (2020) yaitu
			Asphalt C	Concrete -					ini meninja	u tentang durabil	litas.	800 kg.			
			Wearing Co	ourse (AC				3.	Penelitian	terdahulu hanya	dilakukan				
			- WC) Da	ri <i>Quarry</i>					variasi suh	u perendaman o	liatas suhu				
			Takari						standar der	ngan durasi pere	ndaman 24				
									jam. Sedai	ngkan pada per	nelitian ini				
									variasi su	ıhu perendama	ın adalah				
									dibawah su	ıhu standar dan	diatas suhu				
									standar der	ngan durasi pere	ndaman 30				
									menit, 24 ja	am, dan 48 jam.					