BABI

PENDAHULUAN

1.1 Latar Belakang

Sungai merupakan jaringan alur- alur pada permukaan bumi yang terbentuk secara alamiah, mulai dari bentuk kecil di bagian hulu sampai besar di bagian hilir. Aliran sungai merupakan sumber air yang paling dominan untuk memenuhi kebutuhan hidup manusia, sehingah sungai tersebut dapat di usahakan kelestariannya yaitu dengan salah satu mengusahakan agar alur sungai tetap stabil. Sungai yang tidak berfungsi dengan baik pada suatu DAS dapat menyebabkan bencana alam seperti banjir yang merugikan ataupun kekeringan pada musim kemarau. Oleh sebab itu sungai perlu di jaga kelestariannya yakni dengan mengusahakan agar perubahan ketinggian dasar sungai berlansung selambat mungkin.

Banjir merupakan permasalahan yang sering terjadi di Indonesia, penyebabnya adalah akibat curah hujan yang tinggi dan sungai yang tidak dapat menampung debit banjir tersebut. Ketidak mampuan sungai dalam menampung debit banjir disebabkan oleh kapasitas sungai yang mengalami perubahan volume tampungan akibat adanya erosi dan sedimentasi.

Erosi seringkali terjadi di bagian hulu, salah satu faktor pengaruh erosi adalah vegetasi penutup tanah dan tata guna lahan. Sedangkan proses sedimentasi merupakan proses dimana terkumpulnya butir-butir tanah yang terjadi karena kecepatan aliran air yang mengangkut bahan sedimen hingga mencapai kecepatan pengendapan (*settling velocity*). Sedimen pada umumnya mengendap pada daerah genangan banjir, saluran air, sungai, dan waduk.

Sedimentasi merupakan terbawanya material oleh fluida ke suatu wilayah yang kemudian terendap. Kecepatan endapan sedimen sangat dipengaruhi oleh beberapa faktor yaitu berat jenis fluida, berat jenis partikel, jenis aliran, dan bentuk partikel. Sedimentasi ini merupakan faktor penting dalam permasalahan sungai, sedimen sendiri terbagi menjadi dua macam berdasarkan mekanisme pengangkutan seperti sedimen dasar (*bead load*) maupun sedimen layang (*suspended load*) (Ramadhan & Wibowo, n.d.)

Proses sedimentasi dapat mempengaruhi ketinggian dasatr Sungai. Proses sedimentasi pada suatu sungai meliputi erosi, transportasi, pengendapan dari sedimentasi itu sendiri. Proses sedimentasi berlangsung terus menerus akan mempengaruhi kestabilan alur sungai di m ana akan tebentuk daratan yang baru disertai dengan perubahan atau perpindahan alur sungai

Sungai Noelmina memiliki luas DAS sebesar 1973,368m² dan memiliki Panjang 221,637km. Sungai Noelmina Kabupaten Kupang, menjadi masalah serius karena mengalami kejadian banjir setiap tahun dan akan menyebabkan luapan air dan sedimen yang menumpuk sehinggah berdampak pada kerusakan tanaman pertanian dan terganggunya aktivitas masyarakat yang diakibatkan oleh banjir.

Untuk mencapai maksud tersebut perlu diketahui besaran angkutan sedimen dan karakteristik sedimen pada Sungai Noelmina. Untuk itu perlu mengadakan penelitian tentang "perhitungan angkutan sedimen pada Sungai Noelmina dengan pendekatan beberapa metode perhitungan yang dapat digunakan untuk mengetahui karakteristik dan besaran angkutan sedimen yang ada di Sungai Noelmina. Metode yang digunakan dalam perhitungan angkutan sedimen yaitu, metode Meyer Petter Muller (1948) dan metode Einstein (1950) dengan 3 titik pengamatan.

Berdarsarkan latar belakang di atas maka dilakukan "Analisis Angkutan Sedimen Pada Sungai Noelmina"

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas maka diperlukan penelitian kasus tentang Analisis Angkutan Sedimen di Sungai Noelmina Kabupaten Kupang:

- 1. Bagaimana karakteristik angkutan sedimen pada Sungai Noelmina?
- 2. Berapakah besar angkutan sedimen dasar (bead load) pada Sungai Noelmina?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah di atas adapun menjadi tujuan dari penelitian ini yaitu:

- 1. Untuk mengetahui karakteristik angkutan sedimen pada Sungai Noelmina.
- 2. Untuk mengetahui besar angkutan sedimen dasar (bead load) pada Sungai Noelmina?

1.4 Batasan Masalah

Dalam penelitian ini agar masalah- masalah tidak melebar jauh maka akan di lakukan batasan masalah dalam penelitian ini, yaitu:

- 1. Lokasi penelitian akan dilakukan pada Sungai Noelmina
- 2. Pengukuran lansung di sungai Noelmina dan pengambilan sampel sedimen dilakukan langsung di Sungai Noelmina
- 3. Perhitungan angkutan sedimen terbatas pada angkutan sedimen dasar (bed load), tanpa mencakup angkutan sedimen melayang (suspended load).pada Sungai Noelmina
- 4. Pemabahasan berbasis pada data pengukuran yang ada, dibatasi pada lokasi terpilih, alur sungai yang ditinjau hulu,tengah, hilir sepanjang 500m.
- Analisis dilakukan menggunakan dua metode empiris, yaitu Meyer-Peter Müller (MPM) dan Einstein, tanpa membandingkan dengan hasil simulasi perangkat lunak hidraulika.
- 6. Penelitian ini tidak membahas perencanaan bangunan pengendali banjir, kerusakan infrastruktur, atau perhitungan total sedimentasi tahunan secara menyeluruh, tetapi fokus pada identifikasi besarnya angkutan sedimen sebagai indikator awal potensi sedimentasi yang memicu banjir di wilayah sekitar Sungai Noelmina.

1.5 Manfaat Penelitian

Manfaat yang di ambil dari penulisan tugas akhir ini adalah:

- 1. Memberikan pengetahuan mengenai tata cara,prosedur dan analisis berkaitan dengan penanganan masalah sedimentasi di Sungai Noelmina.
- 2. Sebagai bahan pertimbangan bagi pihak yang yang berkepentingan dalam hal penanganan sedimen di Sungai Noelmina yang di harapkan dapat membantu dalam menentukan pola perencanaan dan pengelolaan secra berkelanjutan.

1.6 Keterkaitan dengan Penelitian Terdahulu

Penelitian terdahulu untuk mengetahui bagaimana metode penelitian dan hasil-hasil penelitian yang dilakukan. Tujuan adanya penelitian terdahulu digunakan sebagai tolak ukur untuk menulis dan menganalisis suatu penelitian.

Tabel 1. 1Keterkaitan dengan Penelitian Terdahulu.

No.	Penulisan dan judul penelitian	Perbedaan	Persamaan	Hasil
1.	Wayan Sudira dan Tiny Mananoma,	Lokasi penelitain yang digunakan	Dalam peneltian ini peneliti	Hasil analisis menunjukan
	H. Manalip"	peneliti terdahulu Sungai	terdahulu menggunakan metode	bahwa pada Sungai
	jurnal (2013)	Manhasan.Pada penelitian Lokasi yang	MPM untuk mengetahui besaran	mansahan di ruas terpilih
	Analisis angkutan sedimen pada	digunakan Sungai Noelmina.Pada	angkutan sedimen. Pada	terjadi sedimentasi 251,21
	Sungai Mansahan	penelitian ini peneliti terdahulu	peneltian kali ini menggunkan	m3/hari dan dari 3 Metode
		menggukan tiga Metode untuk	metode MPM untuk	(Van Rijn, MPM dan
		menghitung besaran angkutan sedimen	menghitungan besaran angkutan	Rottner) yang dipakai hasil
		yaitu Metode Mayyer Petter	sedimen.	yang mendekati dengan
		Muller,Metode Van Rijn dan Rotner.		pengukuran adalah Metode
		Pada penelitian kali ini Metode yang		Rottener.
		digunakan yaitu Metode MPM dan		
		Einstein.		
2.	U Rizkika" jurnal 2020	Lokasi peneltian yang digunakan pada	Pada penelitian ini peneliti	Berdasarkan hasil
	Analisis angkutan sedimen pada	penelti terdahulu Sungai Renggung dan	terdahulu menghitung sedimen	perhitungan dari Metode
	Mungai Renggung dan Saluran	saluran primer bendung Katon	menggunakan dua Metode yaitu	MPM dan Einstein di
	Primer Bendung Katon.	penelitian ini juga menghitung angkut	Metode MPM dan Einstein.	dapatkan bahwa nilai
		sedimen melayang.Pada penelitian kali	Penelitian kali ini menghitung	hitungan Metode MPM lebih
		ini menggunakan Lokasi Sungai	angkutan sedimen menggunakan	besar dari nilai hitungan
		Noelmina dan hanya menghitung		Metode Einstein sedang hasil
				perhitungan sedimen

		karaketristik angkutan, b	esaran	Rumus dan metode yang sama	melayang (suspen bedload)
		angkutan sedimen Sungai Noelm	ina.	yaitu MPM dan einstein.	dengan Metode USBR
					(United State Beureu
					Reclamation) yang
					menghasilkan debit sediman
					dalam ton/hari, sebagai
					berikut : a. Pada penampang
					sungai didapatkan nilai
					sebesar 10,093 ton/hari. b.
					Pada penampang saluran 1
					didapatkan nilai sebesar
					0,3687 ton/hari. c. Pada
					penampang saluran 2
					didapatkan nilai sebesar
					0,847 ton/hari. d. Pada
					penampang saluran 3
					didapatkan nilai sebesar
					0,536 ton/hari.
3.	Achmad Rusdi, Hendrik Pristianto,	Lokasi peneltian yang digunaka	n pada	Pada peneltian ini perhitungan	Berdasarkan ukuran butir,
	Indra Kurniawan, Retno Puspa Rini	peneliti terdahulu di Kabupaten s	sorong.	angkutan sedimen menggunakan	d55 sebesar 0,244 mm dan
	dan Anang Julianto"	Pada penelitian kali ini lakosi per	nelitian	Metode MPM dan Einstein dan	d90 sebesar 0,68 mm,
	Jurnal 2024	yang gunakan Sungai No	elmina	menggunakan Rumus yang	sedangkan menurut
	Perbandingan Metode Meyer-Peter	Kabupaten kapang		sama.	klasifikasi AGU (American
	Müller Dan Metode Einstein Untuk				Geophysical Union),

	Analisis Sedimen pada Bendung			sedimen dasar tergolong
	Malawele Kabupaten Sorong			dalam jenis fragmen pasir
				halus dan pasir berkwarsa.
				Analisis menggunakan
				metode MPM menunjukkan
				angkutan sedimen sebesar
				31,025 m³/tahun, sedangkan
				metode Einstein
				menghasilkan angka yang
				lebih besar, yaitu 42,533
				m³/tahun, dengan selisih
				sebesar 11,508 m³/tahun.
				Dari kedua metode ini,
				metode Einstein
				menghasilkan estimasi
				angkutan sedimen yang lebih
				besar dibandingkan metode
				MPM.
4.	Muhammad Ramadhan, Hari	Lokasi peneltian yang digunakan	Pada penelitian ini peneliti	Berdasarkan perhitungan
	Wibowo, Kartini"	peneliti terdahulu yaitu sungai	terdahulu menghitungan	angkutan sedimen melayang
		Pangkalan. Pada penelitian kali ini	Angkutan Sedimen menggunkan	dengan Metode sesaat
	Jurnal 2020	lakosi penelitian yang di ganakan yaitu	Metode MPM sedangkan pada	dengan rata-rata nilai
		Sungai Nolmina.Peneliti terdahulu	penelitian kali ini perhitungan	angkutan sedimen melayang
		menganilis data angkutan sedimen pada		metode sesaat dari 5 titik
		5 titik Lokasi pada Lokasi penelitian		pengamatan sebesar 0,066

Perhitungan Angkutan Sedimen di	menggunakan Aplikasi HEC-RAS dan	angkutan sedimen menggunakan	kg/det. Perhitungan angkutan
Sungai Pangkalan	metode L.C Van Rijn. Pada penelitian	Metode yang sama yaitu MPM.	sedimen dengan metode L.C
	kali ini menganalisis data menggunakan		Van Rijn tidak dapat
	3 titik pada Lokasi peneltian dengan		digunakan karena parameter
	menggunkan Metode MPM dan		T yaitu stage parameter di
	Einstein.		dapat nilai negatif yang
			berarti sedimen cenderung
			mengendap sehingga Metode
			L.C Van Rijn tidak dapat
			digunakan dalam
			perhitungan untuk sungai
			yang diamati. Berdasarkan
			perhitungan tegangan geser
			dan angka Reynolds yang
			didapat dari diagram Shields
			juga membuktikan bahwa
			ukuran butir diameter 0,023
			mm termasuk wilayah
			partikel diam. Hasil
			perhitungan angkutan
			sedimen dasar dengan
			metode Meyer-Peter-Muller
			dengan rata-rata nilai
			angkutan sedimen dasar
			metode Meyer-Peter-Muller

5.	Ivan Andrian dan Wati A. Pranoto''	Lokasi penelitian yang digunakan	Pada penelitian ini peneliti	dari 5 titik pengamatan sebesar 0,401 kg/det.
	Jurnal 2020 Analisis angkutan sedimen dasar sungai Cibeet dengan Program HEC-RAS dan Uji Laboratorium.	peneliti terdahulu Sungai Cibeet perhitungan angkutan sedimen menggunakan Apalikasi HEC-RAS dan Teori Engelund-Hansen.Pada penelitian kali ini untuk menghitung angkutan sedimen menggunakan Metode MPM dan Einstein.	terdahulu menggunkan Metode MPM untuk menghitung angkutan sedimen.	