BABI

PENDAHULUAN

1.1 Latar Belakang

Peningkatan kualitas pendidikan di Indonesia tidak hanya ditentukan oleh kualitas pengajaran dan kurikulum, tetapi juga oleh dukungan infrastruktur yang memadai. Salah satu fasilitas utama yang menjadi kebutuhan dalam mendukung kegiatan akademik adalah gedung perkuliahan. Gedung perkuliahan yang baik tidak hanya mampu menampung kebutuhan operasional kegiatan belajar mengajar, tetapi juga memberikan kenyamanan dan keamanan bagi penggunanya, termasuk mahasiswa, dosen, dan tenaga pendukung (Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR), 2020).

Dengan semakin meningkatnya jumlah mahasiswa, keberadaan gedung perkuliahan baru layak menjadi kebutuhan penting. Gedung perkuliahan ini diharapkan mampu menyediakan ruang yang cukup untuk kegiatan belajar mengajar, serta dirancang dengan mempertimbangkan faktor keamanan, efisiensi, dan keberlanjutan sehingga pembangunan gedung ini bukan hanya sekadar memenuhi kebutuhan infrastruktur, tetapi diharapkan proses akademik dapat berjalan lebih lancar dan efektif.

Dalam perencanaan gedung perkuliahan, salah satu aspek yang menjadi perhatian utama adalah perencanaan struktur beton bertulang yang optimal. Beton bertulang merupakan salah satu material yang banyak digunakan dalam konstruksi bangunan di Indonesia karena keunggulannya dalam menahan beban tekan dan tarik (Neville, 2011). Namun, perencanaan struktur beton bertulang harus dilakukan dengan cermat agar memenuhi persyaratan keamanan, efisiensi, dan ketahanan terhadap beban, termasuk beban gempa.

Wilayah Nusa Tenggara Timur, terkhususnya Kota Kupang, memiliki potensi gempa bumi yang signifikan karena berada di zona seismik tinggi (Badan Nasional Penanggulangan Bencana (BNPB), 2019). Oleh karena itu, gedung perkuliahan ini harus dirancang agar mampu menahan beban gempa sesuai dengan standar nasional yang berlaku, yaitu SNI 1726-2019 tentang Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non-Gedung. Ketahanan struktur terhadap gempa menjadi aspek yang sangat penting untuk melindungi keselamatan pengguna gedung serta mengurangi risiko kerusakan struktural yang dapat mengakibatkan kerugian besar.

Selain itu, dimensi elemen struktur seperti pelat, balok, kolom, dan pondasi harus dirancang dengan memperhatikan prinsip efisiensi dan efektivitas. Pemilihan dimensi yang tepat tidak hanya dapat mengoptimalkan penggunaan material, tetapi juga meningkatkan stabilitas dan daya dukung struktur secara keseluruhan (Mulyono, 2013). Dalam hal ini, acuan utama yang digunakan adalah SNI 2847-2019 tentang Persyaratan Beton Struktural untuk Bangunan Gedung. Standar ini memberikan panduan teknis yang rinci untuk merancang struktur beton bertulang dengan mempertimbangkan beban-beban yang bekerja, termasuk beban mati, beban hidup, dan beban gempa.

Untuk memastikan perencanaan struktur yang optimal dan akurat, dibutuhkan teknologi modern dalam bentuk perangkat lunak komputer yang digunakan dalam proses analisis dan desain. Salah satu perangkat lunak yang banyak digunakan dalam perencanaan struktur gedung adalah ETABS (*Extended Three-Dimensional Analysis of Building Systems*). ETABS merupakan software yang dirancang khusus untuk menganalisis dan mendesain struktur bangunan, termasuk struktur beton bertulang.

Penggunaan ETABS memungkinkan analisis struktur yang lebih mendalam dan efisien, terutama dalam hal distribusi beban, perilaku elemen struktur, dan respons bangunan terhadap gempa. Software ini juga mendukung perhitungan berdasarkan standar-standar terkini, seperti SNI 2847-2019 dan SNI 1726-2019. Dengan memanfaatkan ETABS, proses perencanaan menjadi lebih terstruktur dan hasil yang diperoleh memiliki tingkat akurasi yang tinggi.

Mempertimbangkan hal-hal di atas, maka penelitian ini diberikan topik "Pradesain Struktur Beton Bertulang Gedung Perkuliahan Berdasarkan SNI 2847-2019 Tentang Persyaratan Beton Struktural Untuk Bangunan Gedung Dan SNI 1726-2019 Tentang Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung Dan Nongedung".

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas dapat diuraikan rumusan permasalahan sebagai berikut :

1. Berapakah dimensi optimum pada elemen struktur pelat, balok, kolom, dan pondasi untuk bangunan gedung perkuliahan berdasarkan SNI 2847-2019?

 Bagaimana respon struktur terhadap Beban Gempa berdasarkan berdasarkan SNI 1726-2019 ?

1.3 Maksud Dan Tujuan Perencanaan

Maksud dan tujuan dari perencanaan gedung ini sebagai berikut :

- 1. Untuk mengetahui berapa dimensi optimum pada elemen struktur pelat, balok, kolom, dan pondasi untuk bangunan gedung perkuliahan berdasarkan SNI 2847-2019.
- 2. Untuk mengetahui bagaimana respon struktur terhadap Beban Gempa berdasarkan berdasarkan 1726-2019.

1.4 Batasan Masalah

Adapun batasan-batasan masalah sebagai berikut:

- 1. Struktur bangunan yang ditinjau adalah bangunan 4 lantai dengan konstruksi beton bertulang.
- Aspek yang ditinjau yaitu perencanaan elemen struktur atas meliputi balok, kolom, pelat, dan hubungan balok-kolom, sedangkan untuk struktur bawah meliputi pondasi beton bertulang.
- 3. Hubungan balok dan kolom merupakan sambungan kaku (Rigid).
- Perencanaan elemen struktur bangunan menggunakan analisis yang mengacu pada Persyaratan Beton Struktural untuk Bangunan Gedung dan penjelasan SNI 2847-2019.
- Analisa perhitungan gaya gempa akan menggunakan metode analisis respon spektrum berdasarkan (SNI 1726-2019) tentang Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non-Gedung.
- 6. Beban-beban yang akan ditinjau adalah beban mati, beban hidup, dan beban gempa.
- 7. Perencanaan bangunan hanya mencakup analisa dan desain elemen struktur.
- 8. Perencanana ini merupakan perencanaan bangunan fiktif.

1.5 Manfaat Perencanaan

Manfaat perencanaan ini adalah agar seorang perencana dapat melakukan perencanaan struktur gedung beton bertulang bertingkat yang tahan gempa dan efisien serta dapat berperan dalam pembangunan gedung bertingkat di Indonesia.

1.6 Keterkaitan Dengan Penelitian Terdahulu

Berdasarkan penelitian terdahulu terdapat beberapa persamaan dan perbedaan yang dapat dilihat pada tabel 1.1.

Tabel 1.1 keterkaitan dengan penelitian terdahulu

No	Nama	Judul	Persamaan	Perbedaan	Hasil
1	Frinsillia	Perencanaan	a) Perencanaan	a) Lokasi	Struktur telah
	Jaglien	Struktur Beton	Struktur	bangunan,	memenuhi persyaratan
	Liando,	Bertulang Gedung	Beton	Data umum	strong column-weak
	Servie O.	Kuliah 5 Lantai	Bertulang.	bangunan.	beam sesuai Sistem
	Dapas,		b) Program yang	b) Wilayah	Rangka Pemikul
	Steenie E.		digunakan.	Gempa.	Momen Khusus
	Wallah		c) Menggunakan	c) Jumlah lantai	(SRPMK), serta
	(2020)		SNI 2847-	bertingkat	mampu menahan gaya
			2019 dan SNI		geser yang terjadi.
			1726-2019		Pendetailan tulangan
			sebagai acuan		dilakukan untuk
					menghasilkan struktur
					yang daktail, terutama
					pada sambungan
					balok-kolom.
2	Berry	Perencanaan	a) Perencanaan	a) Lokasi	Struktur gedung
	Koloy,	Struktur Beton	Struktur	bangunan,	mampu menahan
	Ronny E.	Bertulang Gedung	Beton	Data umum	beban-beban tersebut
	Pandaleke,	Arsip 4 Lantai	Bertulang.	bangunan.	dan memenuhi
	Ellen		b) Analisis	b) Wilayah	persyaratan keamanan
	J.Kumaat		menggunakan	Gempa.	terhadap gempa.
	(2023)		program		Penulangan pada
			ETABS.		elemen struktur
			c) Menggunakan		dirancang untuk
			SNI 2847-		menahan gaya momen
			2019 dan SNI		dan gaya geser, serta
			1726-2019		memenuhi prinsip
			sebagai acuan.		strong column-weak
			d) Jumlah lantai		beam sesuai dengan
			bertingkat		ketentuan srpmk.
3	Arsenius	Studi Perencanaan	a) Analisis	a) Lokasi	Hasil perencanaan
	Tna'auni	Portal Beton	menggunakan	bangunan,	menunjukkan

No	Nama	Judul	Persamaan	Perbedaan	Hasil
	(2023)	Bertulang pada	program	Data umum	bahwaStruktur gedung
		Gedung Fakultas	ETABS.	bangunan.	memenuhi persyaratan
		Teknologi	b) Menggunaka	b) Wilayah	desain SRPMK dan
		Pertanian	n SNI 2847-	Gempa.	mampu menahan
		Universitas	2019 dan SNI	c) Perencanaan	beban-beban yang
		Brawijaya Malang	1726-2019	Portal Beton	bekerja, terutama
		dengan Metode	sebagai	Bertulang	beban gempa.
		SRPMK	acuan.		
			c) Jumlah lantai		
			bertingkat		