BAB I PENDAHULUAN

1.1 Latar belakang

Pembangunan gedung komersial seperti rumah toko (ruko) semakin berkembang seiring dengan pertumbuhan ekonomi yang pesat. Ruko 4 lantai adalah salah satu bentuk bangunan yang sering ditemukan di kawasan perkotaan sebagai tempat usaha dan hunian. Dalam merancang struktur bangunan ini, dibutuhkan perencanaan yang matang, terutama pada bagian struktur beton bertulang yang menjadi tulang punggung bangunan. Pembangunan gedung ruko juga memberikan tantangan tersendiri, terutama dalam hal perencanaan struktur yang harus memenuhi standar keamanan dan kenyamanan pengguna. (Badan Standarnisasi Nasional (BSN), 2019)

Dalam perencanaan struktur beton bertulang, beberapa aspek penting yang perlu diperhatikan adalah dimensi elemen struktur (seperti pelat, balok, kolom, dan pondasi) serta respons struktur terhadap beban gempa. Sebagai daerah yang terletak di zona seismic, memerlukan perencanaan yang sangat hati-hati terhadap potensi gempa bumi. Oleh karena itu, perencanaan struktur gedung ruko harus mengikuti pedoman yang telah ditetapkan oleh peraturan nasional, khususnya SNI 2847:2019 tentang Persyaratan Beton Struktural untuk Bangunan Gedung dan SNI 1726:2019 tentang Pedoman Perencanaan Ketahanan Gempa untuk Bangunan Gedung

Dalam perencanaan struktur beton bertulang, dimensi elemen-elemen struktural harus dioptimalkan agar bangunan dapat menahan beban yang terjadi, baik beban mati, beban hidup, maupun beban gempa. Dimensi yang tidak tepat bisa berisiko pada ketidakstabilan bangunan, baik dari segi kekuatan maupun kestabilan struktur. Oleh karena itu, diperlukan analisis struktur yang mendalam menggunakan software perhitungan struktural yang handal.

ETABS merupakan software yang banyak digunakan dalam perencanaan struktur bangunan bertingkat, termasuk dalam analisis respons bangunan terhadap beban gempa. Software ini memungkinkan perencanaan struktur yang lebih akurat dan efisien melalui pemodelan elemen-elemen struktural yang dapat diuji responsnya terhadap berbagai jenis beban, terutama beban gempa. Dengan menggunakan ETABS, (CSI, 2021) perencanaan

struktur beton bertulang dapat dilakukan secara optimal, memastikan bahwa dimensi elemenelemen struktur sesuai dengan standar yang ditetapkan oleh SNI 2847:2019 dan responserruktur terhadap gempa sesuai dengan SNI 1726:2019.

Berdasarkan pertimbangan yang telah dikemukakan di atas, maka penelitian ini di beri topik ANALISIS KINERJA STRUKTUR BETON BERTULANG BERDASARKAN SNI GEMPA 1726:2019 TENTANG "TATA CARA PERENCANAAN BANGUNAN TAHAN GEMPA GEMPA" DAN SNI BETON STRUKTURAL 2847: 2019 TENTANG " PERSYARATAN BETON STRUKTURAL". PADA GEDUNG RUKO. yang di gunakaan sebagai pusat perbelanjaan dan tempat tinggal. Maka diperlukan ketelitian, keseriusan dan perencanaan yang matang sehingga jika terjadi gempa, struktur bangunan tidak sampai rusak atau runtuh.

1.2 Rumusan Masalah

Di uraikan rumusan permasalahan sebagai berikut :

- 1. Berapa dimensi yang optimum pada elemen struktur pelat, balok, kolom, dan pondasi untuk gedung RUKO berdasarkan peraturan SNI 2847-2019
- Bagaimana respon struktur terhadap beban gempa berdasarkan peraturan SNI 1726-2019.

1.3 Tujuan Penelitian

- 1. Untuk mengetahui Berapa dimensi yang optimum pada elemen struktur pelat, balok, kolom, dan pondasi untuk gedung RUKO berdasarkan peraturan SNI 2847-2019
- 2. Untuk mengetahui Bagaimana respon struktur terhadap beban gempa berdasarkan peraturan SNI 1726-2019.

1.4. Manfaat penelitian

Manfaat perencanaan ini adalah agar perencana dapat melakukan perencanaan struktur gedung beton bertulang bertingkat yang tahan gempa dan efisien sehingga dapat berperan serta dalam pembangunan gedung bertingkat di Indonesia.

1.5. Batasan Masalah

Adapun batasan-batasan masalah sebagai berikut :

- 1. Struktur bangunan yang ditinjau adalah bangunan 4 lantai dengan konstruksi beton bertulang.
- 2. Aspek yang ditinjau yaitu perencanaan elemen struktur atas meliputi balok, kolom, pelat, dan hubungan balok-kolom, sedangkan untuk struktur bawah meliputi struktur pondasi beton bertulang
- 3. Hubungan balok dan kolom merupakan sambungan kaku (*Rigid*).
- 4. Perencanaan elemen struktur bangunan menggunakan analisis yang mengacu pada persyaratan Beton Struktural untuk Bangunan Gedung dan penjelasan (SNI 2847-2019).
- Analisa perhitungan gaya gempa akan menggunakan metode analisis response spektrum berdasarkan (SNI 1726-2019) tentang Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non-Gedung.
- 6. Beban-beban yang akan ditinjau adalah beban mati, beban hidup, dan beban gempa.
- 7. Perencanaan bangunan hanya mencakup analisa dan desain elemen struktur.Keterkaitan dengan Penelitian Terdahulu.

1.6 Keterkaitan Dengan Penelitian Terdahulu

Berdasarkan penelitian terdehulu terdapat persamaan dan perbedaan yang dapat di lihat pada tabel 1.1

Tabel 1.1 Keterkaitan dengan Peneliti terdahulu

No	Nama	Judul	F	Persamaan		Perbedaan	Hasil
1	Frinsillia	Perencanaan	a)]	Perencanaan	a)	Lokasi	Struktur telah
	Jaglien	Struktur Beton	1	Struktur		bangunan,	memenuhi persyaratan
	Liando,	Bertulang Gedung]	Beton		Data umum	strong column-weak
	Servie O.	Kuliah 5 Lantai]	Bertulang.		bangunan.	beam sesuai Sistem
	Dapas,		b)]	Program yang	b)	Wilayah	Rangka Pemikul
	Steenie E.			digunakan.		Gempa.	Momen Khusus
	Wallah		c)]	Menggunakan	c)	Jumlah lantai	(SRPMK), serta

No	Nama	Judul		Persamaan		Perbedaan	Hasil
	(2020)			SNI 2847-		bertingkat	mampu menahan gaya
				2019 dan SNI			geser yang terjadi.
				1726-2019			Pendetailan tulangan
				sebagai acuan			dilakukan untuk
							menghasilkan struktur
							yang daktail, terutama
							pada sambungan
							balok-kolom.
2	Berry	Perencanaan	a)	Perencanaan	a)	Lokasi	Struktur gedung
	Koloy,	Struktur Beton		Struktur		bangunan,	mampu menahan
	Ronny E.	Bertulang Gedung		Beton		Data umum	beban-beban tersebut
	Pandaleke,	Arsip 4 Lantai		Bertulang.		bangunan.	dan memenuhi
	Ellen		b)	Analisis	b)	Wilayah	persyaratan keamanan
	J.Kumaat			menggunakan		Gempa.	terhadap gempa.
	(2023)			program			Penulangan pada
				ETABS.			elemen struktur
			c)	Menggunakan			dirancang untuk
				SNI 2847-			menahan gaya momen
				2019 dan SNI			dan gaya geser, serta
				1726-2019			memenuhi prinsip
				sebagai acuan.			strong column-weak
			d)	Jumlah lantai			beam sesuai dengan
				bertingkat			ketentuan srpmk.
3	Arsenius	Studi Perencanaan	a)	Analisis	a)	Lokasi	Hasil perencanaan
	Tna'auni	Portal Beton		menggunakan		bangunan,	menunjukkan
	(2023)	Bertulang pada		program		Data umum	bahwaStruktur gedung
		Gedung Fakultas		ETABS		bangunan.	memenuhi persyaratan
		Teknologi	b)	Menggunakan	b)	Wilayah	desain SRPMK dan
		Pertanian		SNI 2847-		Gempa.	mampu menahan
		Universitas		2019 dan SNI	c)	Perencanaan	beban-beban yang

No	Nama	Judul	Persamaan	Perbedaan	Hasil
No	Nama	Judul	Persamaan	Perbedaan	Hasil
		Brawijaya Malang dengan Metode SRPMK	1726-2019 sebagai acuan. c) Jumlah lantai bertingkat	Portal Beton Bertulang	bekerja, terutama beban gempa.