BABI

PENDAHULUAN

1.1 Latar Belakang

Badan Nasional Penanggulangan Bencana (BNPB) mendefinisikan banjir sebagai kejadian atau peristiwa alamiah ketika sebidang tanah atau area yang biasanya merupakan lahan kering terendam dengan air dikarenakan volume air yang meningkat (Republik Indonesia, 2007). Penyebab meningkatnya volume air ini adalah topografi wilayah yang rendah, intensitas curah hujan yang tinggi, daerah resapan air, aliran sungai yang terhambat, dan penyumbatan drainase (Ratih, 2022).

Banjir adalah salah salah bencana musiman yang selalu terjadi pada musim penghujan. Berita internasional melaporkan pada tanggal 3 Februari 2025 warga Northeast Queensland mengungsi akibat banjir yang terjadi Townsville akibat curah hujan ekstrem yang melanda Australia selama 3 hari (Regan, 2025). Banjir tersebut telah meyebabkan kerugian materil dan satu korban jiwa (Regan, 2025). Selain di kanca international, di dalam negeri sendiri banjir merupakan bencana yang terus terjadi tanpa bisa dihindari. Harian Kompas Kamis, 30 Januari 2025 melaporkan wilayah Jakarta dan sekitarnya terendam banjir berjam-jam akibat hujan ekstream (Ayu & Farisa, 2025). Banjir tersebut tidak hanya menggenangi permukiman warga tetapi juga ruas-ruas jalan dengan ketinggian air yang bervariasi mulai dari 30 cm hingga 100 cm (Ayu & Farisa, 2025).

Kota Kupang yang memiliki iklim tropis dengan musim kemarau yang lebih panjang daripada musim penghujan juga mengalami masalah yang serupa yaitu banjir. Menurut Pos Kupang, Selasa, 28 Januari 2025, Penjabat Wali Kota Kupang meninjau beberapa rumah yang menjadi korban banjir di kelurahan Penfui (Jehola, 2025). Banjir ini disebabkan oleh curah hujan yang terus menerus melanda kota Kupang selama beberapa hari, dan penyumbatan saluran drainase (Jehola, 2025). Selain Penfui, salah satu lokasi di Kota Kupang yang sering mengalami masalah yang serupa adalah di persimpangan Jalan Jenderal Soeharto, Kelurahan Oepura, Kecamatan Maulafa. Banjir di Oepura selain merusak rumah juga mengganggu lalulintas di jalur jalan tersebut. Kerugian yang pernah terjadi antara lain, pada tahun 2022 banjir menghanyutkan dua rumah, kerusakan pada jalan aspal, dan menyebabkan kecelakaan di daerah tersebut (Hayong, 2022).

Lokasi penelitian ini adalah Jalan Jenderal Soeharto, terkhususnya pada persimpangan antara Jalan Jenderal Soeharto, Jalan H R Koroh dan Jalan Amabi. Lokasi ini sering terdampak banjir. Faktor utama banjir di lokasi ini adalah curah hujan tinggi sehingga kapasitas sungai dan saluran drainase tidak dapat menampung limpasan permukaan. Oleh karena itu, diperlukan identifikasi penampang sungai dan saluran drainase untuk mengetahui mampu atau tidaknya suatu penampang sungai dan saluran drainase menampung debit air yang dilaluinya.

Pengendalian banjir di daerah semi kering memerlukan pendekatan khusus karena karakteristik aliran yang cepat dan volume limpasan yang tinggi meskipun curah hujan relatif rendah. Penelitian sebelumnya oleh Dewandaru et al. (2023) dan Al Fitria et al. (2025) menggunakan software HEC-RAS untuk menganalisis pengendalian banjir, namun fokus pada wilayah dengan curah hujan tinggi dan belum mencakup kondisi semi kering. Keterbatasan ini menunjukkan perlunya studi yang menyesuaikan analisis hidraulik dengan karakteristik wilayah kering. Oleh karena itu, penelitian ini difokuskan pada evaluasi kapasitas penampang drainase sungai di kawasan semi kering sebagai dasar perencanaan pengendalian banjir.

Berdasarkan uraian di atas, maka dianggap perlunya untuk melakukan "Analisis Debit Banjir Menggunakan Metode Alih Ragam Hujan-Limpasan. Studi Kasus: Daerah Aliran Sungai Kupang (Tengah), Nusa Tenggara Timur." Penelitian dilakukan untuk mengetahui limpasan dan daya tampung sungai dan saluran drainase pada Jalan Jendral Soeharto.

1.2 Rumusan Masalah

Adapun rumusan masalah dalam penelitian ini adalah:

- 1. Bagaimana debit banjir di Jalan Soeharto, Kota Kupang, Provinsi Nusa Tenggara Timur (NTT) menurut analisis hujan-limpasan?
- 2. Bagaimana daya tampung atau kapasitas dari penampang sungai di Jalan Jendral Soeharto, Kota Kupang, Provinsi Nusa Tenggara Timur (NTT)?

1.3 Tujuan Penelitian

Adapun Tujuan penelitian ini dilakukan untuk:

1. Mengetahui debit banjir di DAS Kupang (Tengah) menurut analisis hujan-limpasan

2. Mengetahui daya tampung sungai di Jalan Jendral Soeharto, Kota Kupang, Provinsi Nusa Tenggara Timur (NTT).

1.4 Manfaat Penelitian

Manfaat yang diharapkan peneliti dari hasil penelitian ini adalah :

- Dapat mencegah terjadinya masalah air yang meluap pada setiap musim hujan di Jalan Jendral Soeharto.
- 2. Dapat mengurangi kerugian yang dialami oleh warga pada saat musim penghujan.
- 3. Dapat memberi informasi mengenai dampak terjadinya meluapnya air di jalan Jendral Soeharto.s

1.5 Batasan Masalah

Adapun Batasan masalah dalam peneletian ini agar tidak terjadi perluasan dalam pembahasan, maka Batasan-batasannya ialah sebagai berikut :

- 1. Lokasi Pengamatan yaitu Drainse di jalan Jendral Soeharto.
- 2. Menganalisis dan mengevaluasi mengapa adanya luapan air yang berlebih dengan saluran system drainase yang ada pada jalan Jendral Soeharto.
- 3. Data yang digunakan merupakan data curah hujan 1 stasiun dari tahun 1992-2024 berdasarkan BMKG.

1.6 Keterkaitan Dengan Penelitian Terdahulu

Terdapat pula perbedaan dan persamaan penelitian ini dengan penelitian sebelumnya atau penelitian terdahulu sebagai berikut :

Tabel 1. 1 Penelitian Terdahulu

No.	Tahun	Nama	Judul	Persamaan	Perbedaan		Hasil
1.	2023	Firman Krisna	Evaluasi Kapasitas	Sama-sama menganalisis	Penelitian terdahulu melakukan	>	HEC-RAS
		Dewandara, Eko	Penampang Sungai	banjir dan penggunaan	pengujian keakuratan model		mensimulasikan
		Noerhayati, Azizah	Bodri Dengan	HEC-RAS.	hidrograf limpasan pada		hidrograf limpasan
		Rokhmawati.	menggunakan HEC-		kondisi ekstream, sedangkan		ekstream.
			RAS		pada proposal saya	>	Hasil yang
					perencanaan perbaikan drainase		mendekati antara
					di lokasi studi dan mengetahui		model fisik dan
					kondisi banjir yang terjadi.		numerik yang
							diamati.
2.	2025	Al Fitria, A. I.,	Studi Evaluasi dan	Memiliki persamaan pada	Penelitian sebelumnya tidak	>	Kedalaman air dan
		Noerhayati, E., &	Upaya Pengendalian	tujuan, pendekatan dan	membahas secara rinci		area limpasan air
		Rokhmawati, A.	Banjir Sungai	data yang digunakan,	mengenai analisis hidrolika		yang dikategorikan
			Kolokoso di Kediri	sama-sama berupaya	dengan menggunakan		berdasarkan
			dengan	untuk memahami dan	persamaan-persamaan		Tingkat debit.
			Menggunakan	mengatasi masalah banjir	hidrolika. Penelitian	>	Total limpasan air
			Software HEC-RAS.	dengan metode ilmiah	sebelumnya juga lebih berfokus		mencapai
				dan menggunakan HEC-	pada permodelan DAS		13.429,05 hektar.
				RAS sebagai perangkat	sedangkan proposal saya lebih		
				lunak untuk menganalisis.	berfokus pada drainase jalan		
					dan analisis hidrologi yang		
					lebih komprehensif		

No.	Tahun	Nama	Judul	Persamaan	Perbedaan		Hasil
3.	2015	Ichsan Syaputra.	Kajian Hidrologi dan	Memiliki tujuan yang	Penelitian sebelumnya terletak	>	Debit banjir
			Analisa Kapasitas	sama menganalisis	pada daerah dengan curah		rencana untuk
			Tampang Sungai	masalah banjir di suatu	hujan relatif tinggi, sedangkan		periode ulang 2
			Krueng Langsa	DAS, juga melakukan	proposal saya berada di daerah		tahun adalah 59,30
			Berbasis HEC-HMS	analisis hidrolika untuk	yang memiliki iklim tropis		m3/ detik
			dan HEC-RAS	mengevaluasi kapasitas	yang panjang.	>	Kapasitas tampang
				penampang			eksisting adalah
				sungai/saluran eksisting			60.07 m3/detik.
				dalam menampung debit			
				banjir rencana.			