BAB 1

PENDAHULUAN

1.1 Latar Belakang

Tanah merupakan salah satu komponen utama dalam sistem pendukung struktur bangunan dan infrastruktur. Salah satu jenis tanah yang banyak ditemukan di wilayah tropis seperti Kabupaten Kupang adalah tanah lempung. Tanah ini memiliki sifat yang unik, seperti menyerap air dan mengalami perubahan volume yang signifikan tergantung pada kondisi kelembaban lingkungan ketika kadar airnya berubah (Lestari & Lestari, 2014). Kadar air ini merupakan faktor utama yang sangat mempengaruhi sifat fisik dan mekanik tanah lempung, terutama kuat geser, kompresibilitas, serta potensi pengembangan (swelling).

Perubahan kadar air pada tanah lempung dapat menyebabkan perubahan signifikan pada kekuatan geser dan potensi pengembangan tanah tersebut. Kadar air yang berbeda dapat mempengaruhi kuat geser tanah lempung, yang merupakan parameter penting untuk menentukan stabilitas bangunan serta infrastruktur lainnya. Menurut Yamali (2011), tanah lempung dengan kadar air yang cukup tinggi cenderung memiliki kohesi yang lebih kuat, tetapi memiliki risiko yang sangat tinggi terhadap ekspansi yang menyebabkan kerusakan pada struktur atau bangunan di sekitarnya. Sedangkan kadar air yang rendah akan mengurangi kemampuan daya dukung tanah dan menyebabkan penurunan pada bangunan yang berada di atasnya.

Kabupaten Kupang adalah wilayah yang memiliki kondisi geologi dan hidrologi yang unik, dengan curah hujan yang relatif tinggi dan memiliki sebaran tanah lempung yang cukup luas. Jenis tanah yang responsif terhadap air, ditambah dengan fluktuasi kelembapan akibat kondisi iklim yang berubah-ubah, menjadikan wilayah ini sangat rentan mengalami penurunan kuat geser serta peningkatan nilai pengembangan tanah. Hal ini menunjukkan bahwa kadar air tanah bukan hanya mempengaruhi kekuatan tanah, tetapi juga memengaruhi kestabilan jangka panjang bangunan dan infrastruktur di wilayah ini.

Selain itu, fluktuasi kadar air yang ekstrim dapat menyebabkan siklus pengembangan dan penyusutan tanah yang berulang, yang berpotensi menyebabkan kerusakan struktur secara progresif. Kegagalan dalam mempertimbangkan kadar air dapat menyebabkan kerusakan pada struktur atau bangunan-bangunan lainnya, yang dapat berdampak pada keselamatan masyarakat dan perekonomian setempat.

Dengan mempertimbangkan sifat tanah lempung yang sangat dipengaruhi oleh kadar air, serta kondisi iklim Kabupaten Kupang yang cenderung kering dan memiliki tingkat kelembapan tanah yang tidak stabil, maka diperlukan analisis lebih lanjut terhadap perilaku tanah di wilayah ini, terutama pada kondisi di bawah dan di atas kadar air optimum. Kadar air optimum adalah kondisi di mana tanah mencapai kepadatan maksimum dan daya dukung terbaik. Penelitian ini secara khusus akan memfokuskan pada dua variasi kadar air di bawah batas optimum dan dua variasi di atas batas optimum, guna mengetahui sejauh mana perubahan kadar air ini mempengaruhi kuat geser dan nilai pengembangan (*swelling*) tanah lempung di Kabupaten Kupang. Pemilihan variasi ini bertujuan untuk mengsimulasikan kondisi nyata di lapangan, baik saat musim kemarau (kadar air di bawah optimum) maupun musim hujan (kadar air di atas optimum).

Jika tanah lempung terlalu banyak menyerap air, ia akan mengembang dan memberikan tekanan terhadap bangunan di atasnya. Sebaliknya, saat musim kering tanah akan menyusut dan tidak mampu menopang beban dengan baik. Situasi tersebut dapat menyebabkan berbagai gangguan teknis, seperti keretakan pada bangunan, pergeseran fondasi, dan deformasi permukaan jalan.

Oleh karena itu, penelitian yang mengkaji tentang "Pengaruh Kadar Air Terhadap Kuat Geser dan Nilai Pengembangan (Swelling) Tanah Lempung di Kabupaten Kupang" sangat penting untuk menghasilkan data yang berguna dalam mendukung perencanaan konstruksi yang lebih adaptif dan berkelanjutan di Kabupaten Kupang.

1.2 Rumusan Masalah

Berdasarkan uraian dari latar belakang, maka rumusan masalah yang diangkat dalam penelitian ini adalah:

- 1. Bagaimana karakteristik fisik tanah di wilayah Kabupaten Kupang?
- 2. Bagaimana variasi kadar air pada tanah lempung di Kabupaten Kupang berdasarkan hasil uji laboratorium?

- 3. Seberapa besar pengaruh variasi kadar air terhadap kuat geser tanah lempung berdasarkan hasil *direct shear test*?
- 4. Bagaimana perubahan kadar air yang mempengaruhi potensi nilai pengembangan (swelling) tanah lempung berdasarkan hasil swell test?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Menentukan karakteristik fisik tanah di wilayah Kabupaten Kupang.
- 2. Menilai variasi kadar air pada sampel tanah lempung yang diambil dari wilayah Kabupaten Kupang melalui pengujian laboratorium.
- 3. Menguji pengaruh variasi kadar air terhadap kuat geser tanah lempung menggunakan *direct shear test*.
- 4. Menganalisis dampak perubahan kadar air terhadap potensi *swelling* tanah lempung melalui *swell test*.

1.4 Manfaat Penelitian

Tujuan dari penelitian ini adalah:

- Memberikan pemahaman mengenai karakteristik fisik tanah di wilayah Kabupaten Kupang.
- Memberikan pemahaman tentang variasi kadar air pada sampel tanah lempung yang diambil dari wilayah kabupaten kupang melalui pengujian laboratorium.
- Membantu memberikan informasi dalam perencanaan dan evaluasi kestabilan tanah pada proyek konstruksi dan infrastruktur di wilayah kabupaten kupang.
- 4. Memberikan sebuah gambaran tentang potensi pengembangan volume tanah lempung akibat perubahan kadar air menggunakan *swell test*.

1.5 Batasan Masalah

Agar penelitian ini dapat berjalan dengan efektif dan mencapai tujuan yang di inginkan, maka penelitian ini dibatasi pada:

1. Jenis Tanah yang Diteliti

Penelitian ini hanya difokuskan pada tanah lempung yang diambil dari Desa Takari, Kecamatan Takari, Kabupaten Kupang. Jenis tanah lainnya tidak termasuk dalam penelitian ini.

2. Variabel yang Dikaji

Penelitian ini hanya menganalisis pengaruh kadar air terhadap kuat geser dan nilai pengembangan (*swelling*) tanah. Faktor lain yang dapat mempengaruhi kuat geser tanah tidak dibahas secara mendalam.

3. Pengujian yang Dilakukan

Pengujian laboratorium hanya difokuskan pada uji kadar air, uji kuat geser (*direct shear test*), dan uji pemuaian (*swell test*) tanpa mempertimbangkan faktor lain seperti kandungan mineral atau kandungan struktur.

4. Kondisi Lingkungan

Penelitian ini dilakukan dalam kondisi laboratorium yang terkontrol yaitu pada Laboratorium Tanah Teknik Sipil Universitas Katolik Widya Mandira Kupang. Pengaruh lingkungan seperti kelembaban, suhu, dan kondisi cuaca di lokasi sebenarnya tidak dianalisis dalam penelitian ini.

5. Parameter yang Dianalisis

Parameter yang dianalisis dalam penelitian ini hanya meliputi pengaruh kadar air terhadap kuat geser dan nilai pengembangan (*swelling*) tanah.

6. Metode Pengujian

Metode pengujian yang digunakan adalah variasi kadar air dan modifikasi. Kuat geser langsung dan *swell test* mengikuti setiap variasi kadar air yang ditetapkan.

1.6 Keterkaitan Dengan Penelitian Terdahulu

Penelitian ini terkait dengan beberapa studi sebelumnya yang memiliki persamaan dalam topik, metode atau temuan, dapat dilihat pada Tabel berikut ini.

Tabel 1.1 Keterkaitan Dengan Penelitian Terdahulu

No.	Judul Penelitian	Peneliti (Tahun)	Persamaan	Perbedaan	Hasil
1	Pengaruh Drying	Muhammad	1. Menguji kuat	Lokasi Penelitian	Hasil penelitian menunjukkan siklus pengeringan
	And Wetting	Barurrokhim,	geser tanah	2. Penelitian terdahulu hanya	(drying) dan pembasahan (wetting) sangat
	Cycle Terhadap	Utari Sriwijaya	lempung.	menguji kuat geser, sedangkan	memengaruhi kuat geser tanah lempung, di mana
	Kuat Geser Tanah	Minaka, dan	2. Meneliti	penelitian ini menguji dua	kuat geser tertinggi 6,88 kPa tercapai pada kadar
	Lempung	Ghina Amalia	pengaruh kadar	parameter yaitu kuat geser dan	air optimum. Pengeringan 7,5% dan 15% dari
		(2022)	air terhadap	nilai pengembangan (swelling).	optimum menurunkan kuat geser menjadi 0,70 kPa
			kuat geser.	3. Penelitian terdahulu fokus pada	dan 2,71 kPa, sedangkan pembasahan 25% dan
				perubahan kadar air secara siklik	32,5% menurunkan kuat geser menjadi 3,45 kPa
				(drying wetting cycle),	dan 2,71 kPa. Hal ini membuktikan penyimpangan
				sedangkan penelitian ini fokus	kadar air dari optimum melemahkan ikatan antar
				pada variasi kadar sedangkan	partikel sehingga kekuatan geser tanah menurun.
				penelitian ini fokus pada variasi	
				kadar air statik.	

2	Pengaruh	Dian Hastari	1. Fokus pada	1. Lokasi Penelitian	Hasil penelitian menunjukkan kuat geser tanah
	Perubahan Kadar	Agustina dan	karakteristik	2. Penelitian terdahulu hanya	tertinggi diperoleh pada kadar air optimum (OMC)
	Air Terhadap	Elfrida (2019)	fisik tanah	mengkaji kuat geser tanah	dengan sudut geser (φ) 43,35° dan kohesi (c) 0,944
	Kekuatan Geser		lempung.	lempung, sedangkan penelitian	kg/cm². Pada kadar air di bawah OMC, tanah
	Tanah Lempung		2. Menguji kuat	ini mengkaji dua aspek sekaligus	lempung menjadi keras dan sulit dipadatkan,
			geser tanah	yaitu kuat geser dan nilai	sedangkan di atas OMC tanah menjadi lunak dan
			lempung.	pengembangan (swelling) tanah	lengket sehingga juga sulit dipadatkan. Perubahan
				lempung.	kadar air hingga 20% di bawah atau di atas OMC
					menurunkan kuat geser secara signifikan dan
					memengaruhi kestabilan tanah.
3	Analisis Nilai	Ary Sismiani,	1. Fokus pada sifat	1. Lokasi Penelitian	Hasil penelitian menunjukkan tanah termasuk
	Parameter Kuat	Iwan Rustendi,	mekanik tanah.	2. Penelitian terdahulu fokus pada	kategori MH-OH (USCS) dan A-7-5 (AASHTO
	Geser Tanah	Citra Pradipta	2. Meneliti	tanah lempung organik yang	T236-72), yaitu lempung organik dengan
	Lempung Organik	Hudoyo	pengaruh kadar	lebih sensitif terhadap	plastisitas sedang hingga tinggi. Kuat geser sangat
	Akibat Perubahan	(2024)	air terhadap kuat	perubahan kadar air, sedangkan	dipengaruhi kadar air, di mana kohesi meningkat
	Kadar Air di		geser tanah	penelitian ini lebih umum	dari 0,29 kg/cm² pada 14,86% menjadi 0,38 kg/cm²
	Sekitar			dengan tanah biasa.	pada 50,05%, sedangkan sudut geser dalam
	<i>Underoass</i> di			3. Penelitian terdahulu fokus pada	menurun dari 22,68° menjadi 17,56°. Tegangan
	Desa Kebocoran			kuat geser tanah lempung,	geser naik pada beban rendah (0,25 kg/cm²) tetapi
				sedangkan penelitian ini lebih	turun pada beban lebih tinggi, menunjukkan

				luas pada dua parameter yaitu	pengaruh kadar air terhadap kuat geser tidak linier
				kuat geser dan nilai	dan bergantung pada pembebanan.
				pengembangan tanah lempung.	
4	Analisis Pengaruh	Nur Asri Ainun	1. Meneliti tanah	1. Lokasi penelitian.	Penelitian ini menunjukkan tanah termasuk jenis
	Variasi Kadar Air	Uba,	lempung.	Penelitian terdahulu berfokus	ekspansif (AASHTO A-7-5, Unified CH) dengan
	Terhadap	Agus Tugas	2. Fokus pada	pada pengaruh kadar air	LL 79,01%, PL 34,28%, IP 44,73%, kadar air
	<u>Swelling</u>	Sudjianto,	pengaruh kadar	terhadap swelling tanah lempung	optimum 43,30%, dan berat volume kering
	Volumetrik Tanah	dan Aji Suraji.	air terhadap	, sedangkan penelitian ini	maksimum 1,227 gr/cm³. Kandungan kimia (SiO ₂
	Lempung	(2021)	nilai swellling	berfokus pada pengaruh kadar	29,1%, Al ₂ O ₃ 20%, Fe ₂ O ₃ 46,48%)
	Ekspansif		tanah lempung.	air terhadap kuat geser dan nilai	mengindikasikan dominasi mineral
				pengembangan swelling.	montmorillonite yang menyebabkan sifat
					kembang-susut. Swelling tertinggi 13,39% pada
					kadar air 20% dan terendah 1,10% pada 60%.
					Variasi kadar air berpengaruh negatif dan
					signifikan terhadap swelling (ANOVA p =
					0,001794; regresi p = $0,0063$; R = $0,98$).